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SUMMARY

Adolescents are notorious for engaging in reward-
seeking behaviors, a tendency attributed to height-
ened activity in the brain’s reward systems during
adolescence. It has been suggested that reward
sensitivity in adolescencemight be adaptive, but ev-
idence of an adaptive role has been scarce. Using a
probabilistic reinforcement learning task combined
with reinforcement learning models and fMRI, we
found that adolescents showed better reinforce-
ment learning and a stronger link between reinforce-
ment learning and episodic memory for rewarding
outcomes. This behavioral benefit was related to
heightened prediction error-related BOLD activity
in the hippocampus and to stronger functional con-
nectivity between the hippocampus and the stria-
tum at the time of reinforcement. These findings
reveal an important role for the hippocampus in
reinforcement learning in adolescence and suggest
that reward sensitivity in adolescence is related to
adaptive differences in how adolescents learn from
experience.

INTRODUCTION

Adolescents are highly sensitive to reward (Andersen et al.,

1997; Brenhouse et al., 2008; Galván et al., 2006; Somerville

and Casey, 2010; van Duijvenvoorde et al., 2014), which has

been linked to the emergence of maladaptive behaviors (Bren-

house and Andersen, 2011; Galván, 2013; Spear, 2000). It has

been suggested that this reward sensitivity may also be adap-

tive by promoting learning and exploration, which are critical

for transitioning to independence (Casey, 2015; Spear, 2000).

However, evidence for enhanced learning in adolescence and

associated neural mechanisms have remained elusive. We
sought to test the hypothesis that adolescents would be better

than adults at learning from reinforcement and that this benefit

would be related to enhanced activity in brain regions that sup-

port learning and memory, particularly the striatum and the

hippocampus.

Advances in understanding neural mechanisms of reinforce-

ment learning in adults have leveraged computational rein-

forcement learning models to quantify trial-by-trial learning

signals in the brain (Daw et al., 2005, 2011; O’Doherty et al.,

2003). Such models highlight the important role of prediction

errors (PEs), which reflect the extent to which reinforcement

received on a given trial deviates from what is expected. By

reflecting trial-by-trial deviations between predictions and out-

comes, prediction errors provide a learning signal that updates

subsequent behavior. fMRI studies in adults and adolescents

have shown that prediction errors correlate with blood-oxy-

gen-level-dependent (BOLD) activity in the striatum (e.g.,

Christakou et al., 2013; Cohen et al., 2010; Hare et al., 2008;

O’Doherty et al., 2003; van den Bos et al., 2012). Despite

some reports of enhanced striatal activity in adolescents, re-

ports of developmental differences in prediction error-related

striatal activity are mixed (Christakou et al., 2013; Cohen

et al., 2010; van den Bos et al., 2012), and so far, none have

shown a link between enhanced striatal BOLD activity in ado-

lescents and enhanced learning. This suggests that, to the

extent that adolescents’ reward sensitivity could be related

to benefits for learning, these may be accounted for by other

brain systems.

A natural brain candidate region for supporting reinforce-

ment learning in adolescence is the hippocampus, known for

its role in long-term episodic memory (e.g., Davachi, 2006; Ga-

brieli, 1998; Squire et al., 2004). The hippocampus also con-

tributes to reward-related behaviors, including reinforcement

learning, reward-guided motivation, and value-based decision

making. Studies in adults show that the hippocampus and the

striatum interact cooperatively to support both episodic en-

coding and reinforcement learning (Adcock et al., 2006; Bun-

zeck et al., 2010; Wimmer and Shohamy, 2012). These find-

ings suggest that reward sensitivity in adolescence could be
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Figure 1. Behavioral Task to Assess Trial-by-Trial Incremental Learning and Episodic Memory

(A) Learning phase: on each trial, a centrally presented cue appeared below two targets. Participants pressed a button to predict which flower a butterfly would

land on and received probabilistic reinforcement along with a trial-unique picture of a commonplace object.

(B) Memory test: participants saw a picture of an object, judged whether the picture was ‘‘old’’ or ‘‘new,’’ and then rated their level of confidence in that

choice.
related to enhanced hippocampal activity, to better reinforce-

ment learning, and to better episodic memory for rewarding

events. But, so far, the role of the hippocampus in reinforce-

ment learning in adolescence has not been studied.

We used a learning task in combination with fMRI and rein-

forcement learning models to address this gap. We hypothe-

sized that, compared to adults, (1) adolescents would be better

at learning from reinforcing outcomes; (2) adolescents would

show a greater relation between reinforcement learning and

episodic memory for rewarding events during learning; and (3)

these differences in learning would be related to enhanced

activity in the hippocampus and stronger coupling between the

hippocampus and the striatum.

Participants learned incrementally, based on trial-by-trial

reinforcement, to associate cues with outcomes (Figure 1A).

The association between cues and outcomes was probabilistic,

requiring continual use of reinforcement to update choices. Rein-

forcement was simply the word ‘‘correct’’ or ‘‘incorrect’’ and was

not motivated by monetary incentives to avoid confounds

related to the motivational significance of monetary reward

across age groups. To test episodic memory for reinforcement

events, we included a unique picture of an object that was inci-

dental to the reinforcement itself in each outcome (Figure 1B).

This design allowed us to measure (1) incremental learning

based on trial-by-trial reinforcement, (2) episodic memory for

reinforcement events, which are positive versus negative, and

(3) the role of the hippocampus and the striatum in both forms

of learning.

RESULTS

Enhanced Reinforcement Learning in Adolescents
We tested whether adolescents (n = 41, 13–17 years old)

differed from adults (n = 31, 20–30 years old) at learning

from reinforcements, comparing (1) overall performance and

(2) estimated learning rates from the reinforcement learning

model. Learning performance was quantified as the percent

of trials for which participants responded with the outcome

most often associated with a given cue (e.g., Poldrack et al.,

2001; Shohamy et al., 2004). A repeated measures (RM)-A-
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NOVA (block 3 group) revealed that both age groups showed

significant learning, but, consistent with our prediction, ado-

lescents’ learning exceeded that of adults (Figure 2A; main ef-

fect of block: F3,210 = 20.2, p = 0.000; block 3 group interac-

tion: F3,210 = 4.04, p = 0.008). Similar results were found for

optimal choice by trial (mixed-effect regression, main effect

of trial: z = 7.13, p = 0.000; group 3 trial interaction: z =

�2.97, p = 0.003), and we also found a better fit of the inter-

action model (c2 = 8.2, p = 0.004) after penalizing for model

complexity (Akaike, 1974).

To further characterize trial-by-trial responses, we applied a

standard reinforcement learning model to each participant’s

choice data (Equation 1 in Supplemental Experimental Proced-

ures). We chose to fit a canonical model, which represents a

standard class of models used extensively in studies of brain

correlates of reward prediction errors in adults (see Daw et al.,

2011). We estimated a learning rate parameter for each partici-

pant (a), which reflects the extent to which feedback on each trial

is used to update later choices. Here, a lower learning rate is bet-

ter because the probabilistic associations between cues and tar-

gets are fixed; a lower learning rate suggests that learning is

guided by accumulating evidence over a greater number of trials

rather than shifting behavior based on the outcome of any single

trial (e.g., Daw, 2011).

Importantly, the model provided a good fit to the observed

behavior across both groups (one-way t test comparing a null

model, t71 = �39.70, p = 0.000, Akaike’s Information Criterion

[AIC] used to penalize model complexity), and the model fits

did not differ between them (independent samples t test, t70 =

1.35, p = 0.2). Consistent with their overall better learning, ado-

lescents had a lower learning rate than adults (t70 = �3.0, p =

0.004; Figure 2B), indicating more incremental learning. More-

over, across groups, there was a significant negative correlation

between learning rate and improved performance on the task

(r70 =�0.43, p = 0.000; Figure S1A), indicating that lower learning

rates were indeed related to better performance. Reaction times

decreased over time for both groups, with no differences be-

tween them, suggesting that differences in learning are not

due to general differences in responses to task demands

(Figure S1B).



Figure 2. Behavioral Results: Adolescents

Differ fromAdults inReinforcement Learning

and in Association between Reinforcement

Learning and Episodic Memory

(A) Learning accuracy. Both groups learned over

time, but adolescents’ learning exceeded adults’.

Points reflect mean optimal choice for 24 or 30

(fMRI) trials; error bars show ±1 SEM.

(B) Learning rate parameter estimates from a

reinforcement learning model. Adolescents

had a lower learning rate than adults, re-

flecting more incremental updating of choice

based on reinforcement. Error bars show ±1

SEM.

(C) Memory accuracy (d0) for trial-unique pic-

tures that had been presented during reinforce-

ment events in the learning task. Memory ac-

curacy was computed separately by presented

reinforcement to determine whether adolescents

differed in their memory for positive and nega-

tive events. Adolescents and adults had better

memory for images that accompanied positive,

rather than negative, reinforcement. Error bars

show ±1 SEM between participants. ***p <

0.000, *p < 0.05.

(D) The relationship between trial-by-trial rein-

forcement learning signals and later episodic

memory for the reinforcement event. Only adolescents showed a reliable relationship between themagnitude of prediction error learning signals and likelihood of

remembering episodic details of the reinforcement event. Lines show association between level of prediction error and the predicted probability from the fitted

model for memory accuracy. Error bars around the fitted line show ±1 SEM.
Memory Positivity Bias in Adolescents and Adults
We first assessed episodic memory for the trial-unique objects

that were presented during learning, separating trials by whether

subjects had been shown positive (‘‘correct’’) versus negative

(‘‘incorrect’’) outcomes. We found a significant effect of rein-

forcement (RM-ANOVA, F1,70 = 24.6, p = 0.000; no effect of

group, F1,70 = 1.6, p = 0.2; no interaction, F1,70 = 1.2, p = 0.3; Fig-

ure 2C; Supplemental Information; Table S1), indicating that both

groups showed a ‘‘positivity bias’’—better memory for positive,

rather than negative, reinforcement events.

Trial-by-Trial Prediction Errors Are Associated with
Episodic Memory in Adolescents, but Not in Adults
We next tested whether reinforcement learning measures were

related to episodic memory using model-derived estimates of

trial-by-trial prediction errors (d) (Equation 1 in Supplemental

Experimental Procedures). Prediction errors provide an estimate

of how surprising each trial’s outcome was, which we used as a

within-participant regressor for both behavioral and brain imag-

ing analysis.

We found that prediction errors were related to memory ac-

curacy and that this effect significantly interacted with group

(mixed-effect regression interaction: PE 3 group, z = 2.4, p =

0.02; no main effect of PE, p = 0.2; or group, p = 0.7). This inter-

action reflected a significant relationship between prediction

error and memory among the adolescents (z = 5.2, p = 0.000;

Figure 2D), but not the adults (z = 1.3, p = 0.2). Thus, in adoles-

cents, but not adults, episodic memory for outcomes was

related to prediction errors. A similar effect was found for the

relationship between reinforcement learning and the positivity
bias in episodic memory across participants (Figures S1C

and S1D).

Prediction Error Signals in the Hippocampus in
Adolescents
A subset of 25 adolescents and 22 adults underwent fMRI while

performing the learning task (behavioral effects in the fMRI group

were the same as in the full behavioral sample; see Figures S1E–

S1I). To interrogate the brain systems underlying differences

in behavior between groups, we regressed prediction errors

against BOLD activity within each participant and compared

the groups in regions of a priori interest in the hippocampus

and the striatum (for whole brain results, see Table S2; for ana-

lyses of value in the ventromedial prefrontal cortex [vmPFC],

see Supplemental Information).

We found that prediction errors were correlated with BOLD

activity in the striatum in both groups, with no significant differ-

ences between them (see Figure S2D; Table S2). In the hippo-

campus, by contrast, adolescents had significantly greater pre-

diction error-related BOLD activity than adults (Figure 3C;

Figure S2C).

Given the behavioral link between reinforcements and mem-

ory in the adolescents, we investigated whether episodic mem-

ory was related to functional connectivity between the hippo-

campus and the striatum. We used a psychophysiological

interaction (PPI) analysis with the time series from a hippocampal

seed as the physiological variable (Figure 4A) and reinforcement

valence of the outcome event (correct > incorrect) as the psy-

chological variable. We found significant connectivity between

the hippocampus and the putamen in adolescents (but not
Neuron 92, 93–99, October 5, 2016 95



Figure 3. Greater Prediction Error-Related

Activationin theHippocampusinAdolescents

(A) Adolescents (n = 25) showed significant acti-

vation bilaterally in the hippocampus in two

clusters (left: family-wise error (FWE)-p < 0.01,

z = 4.15, peak [�16,�8,�20]; right: FWE-p < 0.03,

z = 3.23, peak [24, �20, �12]).

(B) Adults (n = 22) did not show above threshold

activation in the hippocampus.

(C) Direct comparisons between groups within the

hippocampus showed significantly greater acti-

vation in the left hippocampus in the adolescents

than in the adults (FWE-p < 0.03, z = 3.54, peak

[�16, �8, �22]). See Figures S2A–S2C.
adults) that was greater for correct than incorrect outcomes (z =

2.68, family-wise error (FWE)-p < 0.01, 155 voxels, peak [�16,

10, �6]; Figure 4B). We then extracted the interaction value for

each participant from the PPI and correlated this measure of

learning-related connectivity with an independent within-partic-

ipant behavioral measure of memory positivity bias (Figure 4C).

We found a significant correlation between connectivity during

learning and the extent to which memories for positive reinforce-

ment events were enhanced for the adolescents (r = 0.62, p =

0.000), but not the adults (r = 0.05, p = 0.84), and a significant dif-

ference in the correlations between the groups (comparison of

Fisher z transformed correlation coefficients z = 2.16, p = 0.03).

DISCUSSION

The negative implications of reward sensitivity in adolescents

have been well documented, but much less is known about the

possible adaptive side for learning. Our results show that adoles-

cents were better at learning from outcomes, outperforming

adults. We also found that in adolescents, but not adults, trial-

by-trial reinforcement learning is related to episodic memory

for reinforcement events, such that memory was better for sur-

prisingly positive versus negative outcomes. These behavioral

benefits were related to heightened prediction error-related

BOLD activity in the hippocampus and to stronger functional

connectivity between the hippocampus and the striatum at the

time of reinforcement. Finally, only in the adolescents, functional

connectivity between these learning systems was related to the

extent of bias toward better memory for positive reinforcement

events.

This is the first demonstration of a role for the hippocampus

in reinforcement learning in adolescents. Our results imply

that, as adolescents navigate through new life experiences,

learning from reinforcement is linked to how episodic mem-

ories are shaped and to the extent to which they are biased

toward encoding more of the good than the bad. This feature

of learning is important to consider in relation to decision mak-

ing because it speaks to the sorts of biases that adolescents

may encounter when they draw on prior experience to inform

current decisions.

It is important to note that the adolescents in our study were

not better at all types of learning; rather, the benefits were selec-

tive to reinforcement-based updating and reward-related

memory. Overall, episodic memory in the adolescents was not
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better than in adults, and there were no differences between

the groups in memory for just positive or just negative learning

events. Instead, the groups differed specifically in the strength

of the interaction between these two forms of learning.

These findings suggest that, in adolescents, there is less dif-

ferentiation between different forms of learning and their neural

substrates when compared with adults. One possible interpre-

tation of this finding is that it may be related, in part, to the

known delay in development of prefrontal control mechanisms

in adolescence (Somerville and Casey, 2010 for review).

Although it is not known precisely how the arbitration between

different learning and decision systems takes place in the adult

brain, it has been suggested that the prefrontal cortex may play

an important role (Daw et al., 2005; Poldrack and Packard,

2003). Indeed, an influential model of adolescent decision mak-

ing posits a dynamic imbalance between appetitive motiva-

tional brain systems, including the striatum, and inhibitory con-

trol systems in the prefrontal cortex (Galván, 2013; Somerville

and Casey, 2010). Our findings extend this framework and

show that the striatum may be just one learning system, along

with the hippocampus, that has relatively greater influence dur-

ing adolescence. Specifically, our findings suggest that the

functional development of midbrain dopaminergic reward sys-

tems and their connectivity with the striatum and the hippocam-

pus in adolescence is positioned to affect both strengthening of

reward-guided habits and actions, as well as episodic memory

for motivational events. Future studies will need to assess the

role of control and flexibility to identify whether prefrontal sys-

tems regulate the interactions between the striatum and the

hippocampus.

The current study aimed to evaluate the link between rein-

forcement learning and episodic memory by concurrently pre-

senting incidental trial-unique stimuli with reinforcement. An

important direction for future research will be to determine

whether these findings extend to goal-directed episodic en-

coding. In adults, striatal activity has been shown to relate to

goal-directed modulation of episodic memory (Han et al.,

2010). Prior work in adolescents has shown greater sensitivity

to reward-predictive cues in the striatum (Galván et al., 2006).

Together with the current findings, this suggests that goal-

directed cue processing in adolescents may elicit greater

cooperation between the hippocampus and the striatum and

better goal-directed encoding. This possibility remains to be

tested.



Figure 4. Functional Connectivity during

Learning Relates to Memory Positivity Bias

in Adolescents

(A) Time series within the hippocampus showed

functional couplingwith theputamen for the contrast

of correct > incorrect presented reinforcement.

(B) Interaction between the physiological and

psychological regressors in adolescents (limited

to a hypothesis-driven search within the bilateral

striatum; z = 2.68, FWE-p < 0.01, peak [�16, 10,

�6]).

(C) Result of the interaction term from the PPI

was extracted for each participant and correlated

with behavioral memory bias. There was an as-

sociation between learning-related connectivity

and the enhancement of memory for positive

reinforcement in the adolescents, but not in the

adults.
Another important question is how subregions of the striatum

contribute to learning and interact with the hippocampus. We

found prediction error-related BOLD activity in the ventral stria-

tum, as has been shown repeatedly (e.g., Bartra et al., 2013; Cli-

thero andRangel, 2014). This region is connectedwith the hippo-

campus (e.g., Haber and Knutson, 2010) and interacts with it

functionally (e.g., Kahn and Shohamy, 2013). However, our func-

tional connectivity analysis revealed activity in a separate region

in the putamen that correlated with the hippocampus. Research

in adults identified a similar region displaying connectivity with

the hippocampus during cue-value learning (Wimmer et al.,

2014). While functional connectivity in BOLD data does not

necessarily reflect anatomical connectivity, these findings raise

important questions for future work about the interacting circuits

supporting reinforcement learning and episodic memory in

adolescence.

Our findings are generally consistent with studies of episodic

memory in development (Ghetti et al., 2010; Ofen et al., 2012).

Previous research has shown that adolescents have adult-like

recognition memory (Ghetti et al., 2010), whereas younger chil-

dren have worse episodic encoding (Ghetti et al., 2010) and

retrieval (DeMaster et al., 2014; Lloyd et al., 2009). Findings

regarding developmental changes in the hippocampus have

been mixed. Studies of item recognition report no differences

in the hippocampus during development (Ofen et al., 2007).

But other studies indicate that changes in the hippocampus do

continue into adolescence (Daugherty et al., 2016; Lee et al.,

2014) and are related to differences in associative memory per-

formance in adolescents (Ghetti et al., 2010; DeMaster et al.,

2014).

Many new experiences occur during adolescence. Some

work suggests that, at least when looking back from adulthood,
adolescence is a time in which particu-

larly powerful and positive memories

are formed (Haque and Hasking, 2010;

Rubin and Berntsen, 2003; Thomsen

et al., 2011). Of course, adolescence is

also a time when psychopathology may

begin to emerge (Casey et al., 2015;
Ernst et al., 2009; Padmanabhan and Luna, 2014). Both per-

spectives emphasize the importance of learning from experi-

ences during this time of development. The heightened sensi-

tivity of striatal learning systems may put reward-seeking

actions into overdrive but can also confer a benefit in learning

from predictable, but variable, outcomes, as we show here.

Our findings demonstrate that this reinforcement sensitivity

has implications for what kinds of memories are formed in

adolescence and how these memories drive behavior.

EXPERIMENTAL PROCEDURES

All recruitment, screening, consent and assent, and testing procedures were

approved by the University of California, Los Angeles, Institutional Review

Board (IRB) and Columbia University IRB. For descriptions of experimental

materials and procedures, see Supplemental Experimental Procedures.
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two figures, and two tables and can be found with this article online at

http://dx.doi.org/10.1016/j.neuron.2016.08.031.

AUTHOR CONTRIBUTIONS

J.Y.D., K.F., A.G., and D.S. designed the study; J.Y.D. and A.G. collected the

data; J.Y.D. analyzed the data under the supervision of D.S., A.G., and K.F.;

and J.Y.D., K.F., A.G., and D.S. wrote the manuscript.

ACKNOWLEDGMENTS

The authors thank Katherine Duncan, Brad Doll, and Raphael Gerraty for assis-

tance with data analysis and Lucy Owen, Elizabeth Pierce, Kathy Do, Emily

Barkley-Levenson, Diane Goldenberg, Kaitlyn Breiner, and Elica Rahdar for

helping with data collection. This research was supported in part by The
Neuron 92, 93–99, October 5, 2016 97

http://dx.doi.org/10.1016/j.neuron.2016.08.031


National Science Foundation (DGE-11-44155 to J.Y.D., BCS 0963750 to A.G.,

and Career Award 0955494 to D.S.).

Received: December 23, 2015

Revised: July 10, 2016

Accepted: August 10, 2016

Published: October 5, 2016

REFERENCES

Adcock, R.A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B., and Gabrieli,

J.D.E. (2006). Reward-motivated learning: mesolimbic activation precedes

memory formation. Neuron 50, 507–517.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans.

Automat. Contr. 19, 716–723.

Andersen, S.L., Rutstein, M., Benzo, J.M., Hostetter, J.C., and Teicher, M.H.

(1997). Sex differences in dopamine receptor overproduction and elimination.

Neuroreport 8, 1495–1498.

Bartra, O., McGuire, J.T., and Kable, J.W. (2013). The valuation system: a co-

ordinate-based meta-analysis of BOLD fMRI experiments examining neural

correlates of subjective value. Neuroimage 76, 412–427.

Brenhouse, H.C., and Andersen, S.L. (2011). Developmental trajectories dur-

ing adolescence in males and females: a cross-species understanding of un-

derlying brain changes. Neurosci. Biobehav. Rev. 35, 1687–1703.

Brenhouse, H.C., Sonntag, K.C., and Andersen, S.L. (2008). Transient D1

dopamine receptor expression on prefrontal cortex projection neurons: rela-

tionship to enhanced motivational salience of drug cues in adolescence.

J. Neurosci. 28, 2375–2382.

Bunzeck, N., Dayan, P., Dolan, R.J., and Duzel, E. (2010). A common mecha-

nism for adaptive scaling of reward and novelty. Hum. Brain Mapp. 31, 1380–

1394.

Casey, B.J. (2015). Beyond simple models of self-control to circuit-based ac-

counts of adolescent behavior. Annu. Rev. Psychol. 66, 295–319.

Casey, B.J., Glatt, C.E., and Lee, F.S. (2015). Treating the developing versus

developed brain: translating preclinical mouse and human studies. Neuron

86, 1358–1368.

Christakou, A., Gershman, S.J., Niv, Y., Simmons, A., Brammer, M., and

Rubia, K. (2013). Neural and psychological maturation of decision-making in

adolescence and young adulthood. J. Cogn. Neurosci. 25, 1807–1823.

Clithero, J.A., and Rangel, A. (2014). Informatic parcellation of the network

involved in the computation of subjective value. Soc. Cogn. Affect. Neurosci.

9, 1289–1302.

Cohen, J.R., Asarnow, R.F., Sabb, F.W., Bilder, R.M., Bookheimer, S.Y.,

Knowlton, B.J., and Poldrack, R.A. (2010). A unique adolescent response to

reward prediction errors. Nat. Neurosci. 13, 669–671.

Daugherty, A.M., Bender, A.R., Raz, N., and Ofen, N. (2016). Age differences in

hippocampal subfield volumes from childhood to late adulthood. Hippocampus

26, 220–228.

Davachi, L. (2006). Item, context and relational episodic encoding in humans.

Curr. Opin. Neurobiol. 16, 693–700.

Daw, N.D. (2011). Trial-by-trial data analysis using computational models. In

Decision Making, Affect, and Learning: Attention and Performance XXIII,

M.R. Delgado, E.A. Phelps, and T.W. Robbins, eds. (Oxford University Press).

Daw, N.D., Niv, Y., and Dayan, P. (2005). Uncertainty-based competition be-

tween prefrontal and dorsolateral striatal systems for behavioral control. Nat.

Neurosci. 8, 1704–1711.

Daw, N.D., Gershman, S.J., Seymour, B., Dayan, P., and Dolan, R.J. (2011).

Model-based influences on humans’ choices and striatal prediction errors.

Neuron 69, 1204–1215.

DeMaster, D., Pathman, T., Lee, J.K., andGhetti, S. (2014). Structural develop-

ment of the hippocampus and episodic memory: developmental differences

along the anterior/posterior axis. Cereb. Cortex 24, 3036–3045.
98 Neuron 92, 93–99, October 5, 2016
Ernst, M., Romeo, R.D., and Andersen, S.L. (2009). Neurobiology of the devel-

opment of motivated behaviors in adolescence: a window into a neural sys-

tems model. Pharmacol. Biochem. Behav. 93, 199–211.

Gabrieli, J.D.E. (1998). Cognitive neuroscience of human memory. Annu. Rev.

Psychol. 49, 87–115.

Galván, A. (2013). The teenage brain: sensitivity to rewards. Curr. Dir. Psychol.

Sci. 22, 88–93.

Galván, A., Hare, T.A., Parra, C.E., Penn, J., Voss, H., Glover, G., and Casey,

B.J. (2006). Earlier development of the accumbens relative to orbitofrontal cor-

tex might underlie risk-taking behavior in adolescents. J. Neurosci. 26, 6885–

6892.

Ghetti, S., DeMaster, D.M., Yonelinas, A.P., and Bunge, S.A. (2010).

Developmental differences in medial temporal lobe function during memory

encoding. J. Neurosci. 30, 9548–9556.

Haber, S.N., and Knutson, B. (2010). The reward circuit: linking primate anat-

omy and human imaging. Neuropsychopharmacology 35, 4–26.

Han, S., Huettel, S.A., Raposo, A., Adcock, R.A., and Dobbins, I.G. (2010).

Functional significance of striatal responses during episodic decisions: recov-

ery or goal attainment? J. Neurosci. 30, 4767–4775.

Haque, S., and Hasking, P.A. (2010). Life scripts for emotionally charged auto-

biographical memories: a cultural explanation of the reminiscence bump.

Memory 18, 712–729.

Hare, T.A., O’Doherty, J., Camerer, C.F., Schultz, W., and Rangel, A. (2008).

Dissociating the role of the orbitofrontal cortex and the striatum in the compu-

tation of goal values and prediction errors. J. Neurosci. 28, 5623–5630.

Kahn, I., and Shohamy, D. (2013). Intrinsic connectivity between the hippo-

campus, nucleus accumbens, and ventral tegmental area in humans.

Hippocampus 23, 187–192.

Lee, J.K., Ekstrom, A.D., and Ghetti, S. (2014). Volume of hippocampal sub-

fields and episodic memory in childhood and adolescence. Neuroimage 94,

162–171.

Lloyd, M.E., Doydum, A.O., and Newcombe, N.S. (2009). Memory binding in

early childhood: evidence for a retrieval deficit. Child Dev. 80, 1321–1328.

O’Doherty, J.P., Dayan, P., Friston, K., Critchley, H., and Dolan, R.J. (2003).

Temporal difference models and reward-related learning in the human brain.

Neuron 38, 329–337.

Ofen, N., Kao, Y.-C., Sokol-Hessner, P., Kim, H., Whitfield-Gabrieli, S., and

Gabrieli, J.D.E. (2007). Development of the declarative memory system in

the human brain. Nat. Neurosci. 10, 1198–1205.

Ofen, N., Chai, X.J., Schuil, K.D.I., Whitfield-Gabrieli, S., and Gabrieli, J.D.E.

(2012). The development of brain systems associated with successful memory

retrieval of scenes. J. Neurosci. 32, 10012–10020.

Padmanabhan, A., and Luna, B. (2014). Developmental imaging genetics: link-

ing dopamine function to adolescent behavior. Brain Cogn. 89, 27–38.

Poldrack, R.A., and Packard, M.G. (2003). Competition among multiple mem-

ory systems: converging evidence from animal and human brain studies.

Neuropsychologia 41, 245–251.
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Supplemental results  
Testing a standard reinforcement learning model without priors on estimated parameters 
When allowing the learning rate and inverse temperature parameters to take on values between negative infinity and 
positive infinity, the model did not arrive at a solution for 15 adolescents (37% of the group) and 11 adults (35% of 
the group). For the remaining sample for whom the model could solve, 26 adolescents and 20 adults, the model 
provided a good fit to the observed behavior across both groups (one-way t-test comparing a null model,  
t45 = -28.99, p < 0.000) and the model fits did not differ between the groups (independent samples t-test, t44 = 1.8,  
p = 0.08). The learning rate parameter was lower in the adolescents (t44 = -2.06, p = 0.046; adolescent mean 0.38, 
standard error of the mean (SEM) 0.06, adult mean 0.55, SEM 0.06) and there was no difference between groups in 
the inverse temperature parameter (t44 = -0.17, p = 0.86; adolescent mean 5.6, SEM 1.1, adult mean 6.1, SEM 3.4).  
 
Memory accuracy for incidental images 
There was a significant overall effect of memory accuracy (d-prime) in the combined sample (one-way t-test against 
0, t71 = 15.5, p < 0.000) and in each group separately (adolescents, t40 = 12.2, p < 0.000; adults, t30 = 9.5, p < 0.000) 
showing that all participants had good memory for the incidental pictures that were presented at the time of 
reinforcement. As reported in the main manuscript there was a main effect of reinforcement in a repeated measures 
analysis of variance (RM-ANOVA), such that there was better memory for images that were presented with positive 
than negative reinforcement, in adolescents (t40 = 4.4, p < 0.000) and adults (t30 = 2.4, p = 0.02).  
 
Testing the association of memory accuracy with trial-by-trial expected value for cues estimated from a 
reinforcement learning model 
In an analysis parallel to the association with trial-by-trial prediction error and later memory accuracy, we 
investigated whether there was also such an association between expected value as estimated by the reinforcement 
learning model for cues and later memory accuracy. We found no significant associations (main effect of Expected 
value, Z = 0.8, p = 0.4; main effect of Group, Z = -0.3, p = 0.8; interaction, Z = -1.4, p = 0.2). This supports the 
interpretation that differences in value representation, on their own, do not explain the differences we observe 
between groups in the relationship between reinforcement learning and episodic memory. 
 
Targeted analyses of responses in the ventromedial prefrontal cortex (vmPFC) during cue and reinforcement 
Given the known role of vmPFC in value and reinforcement learning (Bartra et al., 2013; Clithero and Rangel, 
2014), we explored whether there were differences in value representation in adolescents and adults that might 
explain differences in learning. We used a general linear model to detect activation at the time of reinforcement for 
events that were positive greater than negative. We applied a correction threshold of Z > 2.3 (p < 0.01 one-tailed) to 
the whole brain in a group-level general linear model, to observe average activation maps in each age group 
separately, and to compare activation between groups. Within the vmPFC, we found significant activation in each 
group (adolescents, Z = 4.37, p < 0.000, peak [-12, 44, -12]; adults, Z = 3.77, p = 0.008, peak [6, 42, -12]), but no 
differences between them at the time of reinforcement. We performed a similar analysis at the time of cue onset, 
evaluating the correlation of estimated expected value for the cue from the reinforcement learning model. This 
analysis again revealed no significant differences in vmPFC activation between the groups.   
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Supplemental Figures and Tables
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Figure S1. Related to Figure 2. (a) A negative correlation between learning rate and improvement in task 
performance. To investigate factors that could contribute to the differences in learning, we compared the estimated 
learning rate parameter (from the reinforcement learning model) and improvement in choices during the task 
(computed as the difference between mean optimal choice proportion in block 4 from block 1; y = block4 – block1) 
which reflects the increase in proportion of choosing the optimal target from the start to the end of the learning 
phase. Consistent with the idea that a lower learning rate is better in this sort of task, we found a significant 
correlation for the whole sample, r = -0.43, p = 0.0002; groups are plotted in blue and grey respectively for 
visualization. (b) No difference in reaction time between the groups. Latency to respond from onset of trial, until 
target selection. Both groups show a speeding of responses over the course of learning, (RM-ANOVA, Block:  
F3,210 = 26.5, p = 0.000), with no differences between them (Group: F1,70 = 0.001, p = 0.9; Block X Group:  
F3,210 = 1.0, p = 0.4). Points reflect mean reaction time per block; bars show ± one SEM. (c-d) Positivity bias in 
memory is related to learning performance in adolescents, but not adults. To relate behavioral measures of 
learning and memory across participants, we generated a single numeric index of memory sensitivity to 
reinforcement valence reflecting each participant’s “positivity bias” in memory. This was calculated by computing a 
difference score for each participant between the proportion of remembered images when the outcome was positive 
vs. negative. We correlated this index of positivity bias with learning as the averaged proportion of optimal choice 
over the entire learning task. Among the adolescents, the positivity bias in memory was correlated with learning, 
such that adolescents who learned better also had a higher positivity bias (n = 41, r = 0.43, p = 0.006). Adults did not 
show this relationship (n = 31, r = 0.22, p = 0.2). A comparison of Fisher-Z transformed correlation coefficients was 
not significant (Z = 0.93, p = 0.4). (e) Subsequent memory analysis of fMRI results in the hippocampus. We 
investigated memory related activation in the hippocampus by comparing remembered and forgotten images from 
the behavioral memory test completed after the scan to brain activity at the time the image was initially presented 
during the learning phase. Memory regressors for fMRI analysis for each participant were derived from remembered 
and forgotten trials. To categorize a trial as remembered, the participant must have correctly identified the image as 
“old” and must have a d-prime above zero for the confidence-rating that the participant provided for that image. 
Similarly, forgotten images were defined as items mis-identified as “new” with a positive d-prime score for the 
associated confidence-rating. Any trial where a participant reported that they were “Just Guessing” was excluded. 
We examined BOLD correlates for remembered greater than forgotten pictures in each group separately and then 
directly compared between the adolescent and adult groups. These analyses were restricted to the hippocampus, our 
a priori subsequent memory ROI (see Supplemental Table S1). Within the adolescents this analysis revealed one 
significant cluster in the left hippocampus (Family-Wise Error (FWE)-p cluster < 0.001, Z = 3.71, 261 voxels, peak 
[-16, -30, -10]). For the adults, there was activation in bilateral hippocampus (Right: FWE-p cluster < 0.02,  
Z = 3.63, 96 voxels, peak [18, -14, -18]. Left: FWE-p cluster < 0.03, Z = 3.38, 93 voxels, peak [-22, -18, -12]), 
however in a direct contrast, there was no above threshold activation for either group over the other. Whole brain 
analysis results are in Supplemental Table S1. (f-i) Behavioral results in fMRI subsample. Behavioral results 
from the subset of participants who completed the probabilistic learning task while undergoing fMRI (n=25 
adolescents; n=22 adults). Key behavioral findings within this sample replicate the results in the full behavioral 
sample reported in the main manuscript. Namely, the adolescents show (1) significantly better reinforcement 
learning than adults, (2) significantly lower learning rates than adults, (3) a significantly stronger association 
between prediction error learning signals and episodic memory for outcome events (within participants) and (4) a 
significant correlation between reinforcement learning and a “positivity bias” in episodic memory (within 
participants). (f) Overall learning. A RM-ANOVA (Block X Group) on the percent of trials for which participants 
responded with the outcome most often associated with that cue revealed that both age groups showed significant 
learning over time but, consistent with our prediction, adolescents’ learning exceeded that of adults (main effect of 
Block: F3,138 = 20.95, p < 0.0001; Block X Group interaction F3,138 = 4.49, p = 0.005). Similar results were found for 
optimal choice by trial, showing learning for the full sample (mixed-effect regression main effect: Z = 2.49, p = 
0.013), but better learning among the adolescent group (mixed-effect regression interaction: Z = 2.65, p = 0.008) 
with a significantly better fit of the group interaction model (χ2=6.42, p = 0.01) after penalizing model complexity 
using Akaike’s Information Criterion (AIC). (g) Learning rate parameter estimate from a reinforcement 
learning model. Consistent with their overall better learning performance, adolescents had a lower learning rate 
parameter than adults (t46 = 2.68, p = 0.01), indicating more incremental learning. Importantly, the model provided a 
good fit to the observed behavior across both groups (one-way t-test comparing a null model, t47 = -35.4, p < 0.0001) 
and the model fits did not differ between them (independent samples t-test, t46 = 0.77, p = 0.45). (h) Memory 
accuracy by reinforcement. We compared memory for the trial-unique objects that were presented during learning, 
separating trials into those with positive (“correct”) versus negative (“incorrect”) outcomes. Adolescents had better 
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memory for positive than negative reinforcement events (two- tailed paired-samples test t25 = 3.56, p = 0.002). The 
adults showed significant memory overall (one-way t-test, n = 22, t21 = 8.1, p = 0.0000001; 1.1 ± 0.14), but no 
difference between positive and negative reinforcement (t21 = 1.04, p = 0.3). (i) Prediction error and predicted 
probability of memory accuracy. The level of prediction error evoked by the reinforcement on a particular trial 
was related to the probability of later memory accuracy, with an interaction effect for group (mixed-effect regression 
interaction: Z = 2.78, p = 0.006). This relationship between prediction error and memory accuracy was driven by the 
adolescents (Z = 4.2,  
p = 0.00003), and no such relationship was found for the adults (Z = 0.2, p = 0.8).  
 
 

 
Figure S2. Related to Figure 3. (a-c) Full visualization of the extent of BOLD activity in the hippocampus 
correlating with prediction error. In the main manuscript (Figure 3) only one coronal plane is shown, and at the 
same location for 3 different maps that does not demonstrate the extent or peak of activity, so for purposes of 
visualization additional slices in all planes are presented. (a) Adolescent group mean. The adolescent group 
showed significant bilateral activation in the hippocampus correlated with prediction error. (b) Adult group mean. 
The adults showed bilateral activation in the hippocampus, but it did not surpass threshold for correction, (largest 
cluster p > 0.1, 13 voxels, peak [22, -20, -12], Z at peak = 2.5). (c) Direct comparison of adolescent group greater 
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than adult group. The adolescents had significantly greater activation in the left hippocampus than adults, and there 
were no significant findings for adults greater than adolescents. (d) No significant differences between the groups 
in prediction error related activation in the striatum. Prediction error was regressed as a parametric modulator 
with BOLD activity and examined within an a priori region of interest in the striatum (combined bilateral caudate, 
putamen, and accumbens, anatomically defined by the Harvard-Oxford probability atlas at a 75% probability 
threshold). Maps depict peak of presented contrast; see Supplemental Table S2 for reports of local maxima. 
Contrasts within-group were thresholded at Z>2.3 one-tailed in FEAT. For between-group contrast correction was 
carried out with FSLs Cluster tool thresholded at Z > 2.3. Cluster extent correction thresholds were estimated by 
AFNIs 3dClustSim by providing the mask and smoothness within the mask, as calculated from the residuals using 
AFNIs 3dFWHMx (http://afni.nimh.nih.gov/). For adolescents, there was significant activation in the bilateral 
ventral striatum. For adults there was significant activation in the left ventral striatum. A comparison between 
groups did not meet correction threshold in either direction (depicted: adolescents > adults; largest cluster p > 0.1, 
50 voxels, peak voxel [-14, 18, -4], Z at peak = 2.73). Whole brain results are in Supplemental Table S2. Contrasts 
within- and between-groups for whole brain analysis were thresholded at Z > 2.3 or FDRp < 0.01 one-tailed in 
FEAT. Whole brain contrasts between-groups yielded no significant differences at this threshold. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	

	 6 

Table S1. Related to Figure 2c. Memory fMRI results (remembered > forgotten), peak and top 4 local 
maxima 

 
Whole brain 

Anatomical Label (H-O atlas) Voxels P Z-score MNI Coordinate  
    X Y Z  

adults, p-voxel < 0.01        
L. temporal occipital fusiform cortex 2167 7.16e-11 4.04 -34 -58 -8 cluster peak 
L. middle temporal gyrus   3.94 -66 -56 6 local max 
   3.92 -54 -50 -8 local max 
L. lateral occipital cortex   3.92 -36 -86 24 local max 
L. inferior temporal gyrus   3.87 -40 -58 -6 local max 
R. lateral occipital cortex 1044 3.76e-6 4.55 46 -62 -8 cluster peak 
   3.53 42 -72 -8 local max 
R. temporal occipital fusiform cortex   4.45 42 -48 -14 local max 
   3.98 38 -52 -10 local max 
R. inferior temporal gyrus   3.72 46 -58 -12 local max 
L. frontal pole 683 0.000268 3.95 -8 66 28 cluster peak 
   3.58 -8 62 2 local max 
   3.56 -2 64 16 local max 
R. superior frontal gyrus   3.55 8 56 18 local max 
   3.54 -8 56 22 local max 
L. frontal orbital cortex 437 0.00769 4.45 -36 32 -14 cluster peak 
   3.52 -44 34 -6 local max 
   3.39 -50 28 -10 local max 
   3.02 -28 28 -20 local max 
L. frontal pole   2.82 -52 40 -10 local max 
L. amygdala 421 0.00974 4.23 -20 -6 -18 cluster peak 
L. hippocampus   3.38 -22 -18 -12 local max 
L. frontal orbital cortex   3.35 -28 8 -16 local max 
L. parahippocampal gyrus   3.08 -16 -22 -24 local max 
L. insular cortex   2.54 -34 8 -8 local max 
R. postcentral gyrus 395 0.0144 3.87 36 -24 46 cluster peak 
   3.26 36 -26 52 local max 
R. precentral gyrus   3.65 40 -20 52 local max 
   3.38 38 -20 66 local max 
   3.25 38 -6 60 local max 
R. amygdala 325 0.0429 3.67 12 -2 -20 cluster peak 
   3.28 20 -6 -14 local max 
   3.18 8 0 -12 local max 
R. hippocampus   3.63 18 -14 -18 local max 
   3.58 22 -14 -16 local max 
        
adolescents, p-voxel < 0.01        
L. occipital pole 8867 5.99E-30 6.96 -32 -92 4 cluster peak 
L. lateral occipital cortex   6.65 -42 -72 -12 local max 

L. occipital fusiform gyrus 
L. inferior temporal gyrus 

  

6.16 
6.3 
6.26 

-42 
-36 
-44 

-76 
-78 
-62 

-4 
-12 

-8 

local max 
local max 
local max 

R. lateral occipital cortex 8229 1.99E-28 6.72 36 -88 -6 cluster peak 
   6.47 36 -88 14 local max 
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   6.39 46 -64 -8 local max 
   6.08 40 -64 -4 local max 
R. occipital pole   5.87 16 -94 -2 local max 
L. frontal operculum cortex 722 0.000164 4.15 -46 26 -2 cluster peak 
L. frontal orbital cortex   4.06 -38 32 -10 local max 
   3.56 -24 28 -12 local max 
L. inferior frontal gyrus   3.81 -42 34 4 local max 
   3.54 -46 28 14 local max 
        
adolescents < adults, p-voxel < 0.01       
R. precuneous cortex 694 0.000233 4.37 4 -46 40 cluster peak 
   3.46 0 -62 32 local max 
   3.43 2 -58 32 local max 
L. cingulate gyrus   3.55 -4 -40 44 local max 
L. precuneous cortex   3.45 -4 -60 38 local max 
 
        

adults < adolescents, p-voxel < 0.01       
R. lateral occipital cortex 3000 7.77E-14 4.96 36 -90 -6 cluster peak 
   4.43 26 -90 -6 local max 
   4.34 28 -82 18 local max 
   4.28 34 -88 -12 local max 
R. occipital fusiform gyrus   4.29 26 -84 -12 local max 
L. occipital fusiform gyrus 2128 1.01E-10 4.44 -28 -84 -14 cluster peak 
   4.27 -38 -76 -14 local max 
   4.03 -40 -72 -12 local max 
L. occipital pole   4.02 -26 -92 12 local max 
L. temporal occipital fusiform cortex   3.65 -44 -52 -24 local max 

 
ROI (bilateral hippocampus) 

Anatomical Label (H-O atlas) Voxels P Z-score MNI Coordinate  
    X Y Z  

adults, p-voxel < 0.01        
R. hippocampus 96 0.0239 3.63 18 -14 -18 cluster peak 
   3.58 22 -14 -16 local max 
   2.59 16 -8 -20 local max 
L. hippocampus 93 0.0257 3.38 -22 -18 -12 cluster peak 
   3.32 -18 -12 -16 local max 
        
adolescents, p-voxel < 0.01        
L. hippocampus 261 0.000852 3.71 -26 -30 -10 cluster peak 
   3.69 -34 -30 -14 local max 
   3.65 -22 -26 -12 local max 
   3.17 -22 -10 -18 local max 
   3.1 -24 -16 -18 local max 
   2.95 -16 -8 -20 local max 
 
adolescents > adults, and adults > adolescents, p-voxel < 0.01     

 

no activation observed above threshold      
 

 
 



	

	 8 

Table S2. Related to Figure 3. Prediction error fMRI results, peak and top 4 local maxima 
      

Whole brain 
Anatomical Label (H-O atlas) Voxels p-cluster Z-score MNI Coordinate  

    X Y Z  
adults, p-voxel < 0.01        
R. occipital pole 5439 1.43E-19 4.83 14 -94 22 cluster peak 
L. occipital pole   4.56 -30 -94 -10 local max 
   4.46 -34 -92 -10 local max 
   4.35 -12 -94 -14 local max 
   4.34 -4 -92 -8 local max 
R. cerebellum 372 0.035 4.26 38 -70 -38 cluster peak 
   3.93 40 -66 -38 local max 
   3.87 36 -60 -42 local max 
   2.88 28 -46 -42 local max 
   2.5 38 -78 -44 local max 
        
adolescents, p-voxel < 0.01        
R. lateral occipital cortex 3377 6.95E-14 5.1 36 -84 4 cluster peak 
   4.62 32 -90 12 local max 
   4.6 34 -86 16 local max 
   4.3 26 -84 12 local max 
   4.05 52 -68 -8 local max 
L. inferior temporal gyrus 3226 1.99E-13 4.83 -54 -62 -12 cluster peak 
   4.62 -52 -52 -12 local max 
L. lateral occipital cortex   4.54 -34 -90 4 local max 
   4.48 -30 -88 -2 local max 
L. middle temporal gyrus   4.49 -62 -48 -8 local max 
L. amygdala 988 2.22E-05 4.65 -18 -8 -14 cluster peak 
L. putamen   4.65 -18 10 -6 local max 
   3.96 -26 0 -8 local max 
L. accumbens (ventral striatum)   4.55 -12 6 -8 local max 
L. hippocampus   3.64 -24 -14 -18 local max 
L. frontal pole 785 0.000199 4.13 -48 44 6 cluster peak 
   4.08 -48 40 12 local max 
   3.94 -52 42 6 local max 
   3.81 -42 36 14 local max 
L. inferior frontal gyrus   3.62 -56 26 4 local max 
R. precentral gyrus 578 0.00228 4.03 24 -26 72 cluster peak 
   3.82 2 -28 64 local max 
   3.73 2 -26 58 local max 
   3.56 8 -26 74 local max 
R. postcentral gyrus   3.43 26 -34 64 local max 

adolescents > adults, and adults > adolescents, p-voxel < 0.01  
 

no activation observed above threshold   
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ROI (Striatum) 
Anatomical Label (H-O atlas) Voxels p-cluster Z-score MNI Coordinate  

    X Y Z  
adults, p-voxel < 0.01        
L. accumbens (ventral striatum)  222 0.00469 3.59 -8 8 -8 cluster peak 
L. putamen   3.21 -28 0 6 local max 
   3.15 -22 6 -8 local max 
   2.75 -28 -12 6 local max 

   
2.74 
2.42 

-26 
-26 

-6 
-2 

-6 
-8 

local max 
local max 

 
adolescents, p-voxel < 0.01        

L. putamen 388 0.000359 4.65 -18 10 -6 cluster peak 
L. accumbens (ventral striatum)   4.55 -12 6 -8 local max 
L. putamen   3.96 -26 0 -8 local max 
   3.82 -24 8 0 local max 
   3.35 -28 -14 6 local max 
   3.27 -28 -8 -4 local max 
R. putamen 209 0.00587 4.03 26 10 0 cluster peak 
   3.63 16 6 -10 local max 

adolescents > adults, and adults > adolescents, p-voxel < 0.01  
 

no activation observed above threshold   
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Supplemental Experimental Procedures 

Forty-three (43) adolescents and 34 adults participated in the study. Among them, 28 adolescents and 25 adults were 

scanned with fMRI. Three adolescents were excluded from various analyses: two were excluded from all analyses, 

due to technical issues; one was excluded from brain imaging analyses due to excessive motion (absolute motion > 

2.4 mm). Three adults were excluded from the final sample, two for technical issues, and one for an incidental 

neurological finding. This resulted in a total final sample of 41 adolescents (ages 13-17, mean age 15.9, SD = 1.4, 14 

females) and 31 adults (ages 20-30, mean age 26.6, SD = 3.0, 18 females) for behavioral analyses and a subset of 25 

adolescents (ages 13-17, mean age 15.9 years, SD = 1.4, 10 females) and 22 adults (ages 24-30, mean age 27.7 

years, SD = 2.0, 13 females) for fMRI analyses. 

 

All adult participants provided informed consent to participate in the study. All adolescent participants provided 

informed assent and had a parent provide informed consent and permission to participate. All participants were 

initially screened over the phone (for adolescent participants screening was completed with the adolescent and a 

parent). All participants were healthy, native-English speakers, with normal color vision, reported no history of 

psychiatric or neurological disorders, were not taking medication, and fMRI participants were all right-handed and 

had no contraindications for scanning. At the completion of study, participants were paid for their time; no 

additional monetary incentives were used as motivation in the task.  

 

To estimate IQ, we administered the Wechsler Abbreviated Scale of Intelligence 2-part sub test, with adolescents 

scoring an average of 107 (SD = 10.4, range 86 to 126, n = 27) and adults scoring an average of 115 (SD = 9.5, 

range 99 to 138, n = 21). The subsample that completed the fMRI was similar, with adolescents scoring an average 

of 104 (SD = 10.3, range 90 to 126, n = 18) and adults scoring an average of 115 (SD = 10.6, range 99 to 138, n = 

14). Adolescents reported estimated pubertal development using a self-report multiple choice questionnaire 

(Petersen et al., 1988), with a mode of stage 3, ranging from stages 2 – 5, reflecting that pubertal development in the 

sample was well underway but not complete. Providing racial and ethnic demographic information was optional; the 

fMRI sample was comprised of 24% Hispanic, 9% Asian, 19% African-American, 63% Caucasian, and 9% mixed-

ethnicity participants recruited from the community.  
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Behavioral Task Procedures  

Pre-task practice. Prior to performing the probabilistic learning task, adolescent and adult participants read 

instructions on a laptop and completed a practice round of the task (8 trials, different stimuli than used in the task) to 

become familiar with the general appearance of the task and to be certain that the instructions were correctly 

understood. The practice task was presented in MatLab (http://www.mathworks.com/) using the Psychophysics 

Toolbox (Brainard, 1997).  

 

Learning task. Participants performed the probabilistic learning task (Foerde and Shohamy, 2011) on a computer or 

while undergoing fMRI. The task was presented in MatLab (http://www.mathworks.com/) using the Psychophysics 

Toolbox (Brainard, 1997) and presentation timing for fMRI of events and jitter durations were optimized for rapid 

event-related fMRI using OptSeq (Dale, 1999).  

 

On each trial in the learning phase, participants saw one of four cues (butterfly; blue, purple, red, yellow) and had to 

predict which of two targets (flowers; pink, white) the butterfly was more likely to feed from. Participants had up to 

four seconds to make a response and were encouraged to respond as quickly as possible. Each cue was associated 

with one target on 80% of trials and with the other target on 20% of trials (Figure 1A). Thus most of the time 

choosing the optimal target for a cue results in  "correct" reinforcement, but the other 20% of the time results in 

"incorrect" reinforcement, allowing the observation of learning rates over the course of the task as well as to 

estimate trial-by-trial expectations and prediction errors.  

 

Participants pressed a button to choose either the left- or the right-sided target and then received reinforcement on 

their choice. Reinforcement was visually presented on the screen for two seconds, followed by a fixation-cross for a 

jittered inter-trial interval. Within participant, each target always appeared in the same location (i.e. fixed left and 

right) and was counterbalanced across participants. Within participant, the cue and target association was fixed over 

the entire task; the combinations were fully counterbalanced across participants. Learning behavior was analyzed 

using summary measures as well as trial-by-trial with reinforcement learning models and linear regression. For trial-

by-trial regression, we fit a mixed effects linear model to each participant’s optimal choice behavior using the lmer 
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package in R (Bates et al., 2015) associating accuracy with Trial X Group modeled as a fixed effect and Participants 

modeled as a random effect. 

 

If a participant did not respond in time, the words "too late" were presented for the duration of the trial to preserve 

timing. No reinforcement was presented for such trials and thus there was no presentation of an “episodic” picture. 

These learning trials were discarded from behavioral analysis and modeled as a regressor of non-interest to be kept 

out of baseline for fMRI analysis. Such, invalid trials in the learning phase resulted in a different number of test 

items for the surprise memory test. There were very few of these invalid trials across all participants. For adults, the 

average response rate was 98% ± 0.03 SEM, with a minimum of 86%. For adolescents, the average response rate 

was 98% ± 0.03 SEM, with a minimum of 88%. 

 

Post-learning test. Immediately following the learning phase was a test phase (1 fMRI run, 32 trials; behavior only 

sample - 1 run, 24 trials), where participants continued to make choices for the same cue-target associations, but no 

longer received reinforcement. Participants were instructed to continue choosing based on the associations that they 

had learned over the previous trials. This provided a measure for how well the associations were learned for each of 

the cues, in the absence of continued reinforcement.  

 

Subsequent memory test. As described in the main text, after the learning task, participants were given a surprise test 

of recognition memory for the outcome images from the learning task. The pictures were orthogonal to the learning 

task in that they provided no information for learning the cue-target associations. Memory testing was completed on 

a computer, 30 minutes after the completion of the learning phase. For participants who did not undergo fMRI, the 

memory test was completed 10 minutes after the completion of the learning phase. Participants saw each picture that 

had appeared in the learning phase ("old" pictures) intermixed with an equal number of novel pictures ("new" 

pictures) that had not been seen in the learning phase. The order of the presentation of old and new pictures was 

random and unique to each participant. Confidence ratings provided an index of how sure participants felt about 

their memory judgments. Confidence ratings allowed the exclusion of “guess” trials from all behavioral analyses, 

and were used in generating behavioral memory regressors for fMRI analysis (see Supplemental Figure S1e). 
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We calculated an average memory accuracy score for each participant, excluding all memory test trials where 

participants indicated they were guessing. Memory accuracy was quantified by d-prime, both overall and separately 

for events where reinforcement was positive vs. negative. D-prime is a signal detection index and a more sensitive 

measure of accuracy because it takes into account the bias of any individual towards identifying items as old. We 

computed d-prime using normalized rates of correctly remembered trials (hits) and trials where participants 

mistakenly identified novel pictures as old (false alarms). For computation of d-prime for positive and negative 

reinforcement, normalized rate of false alarms was subtracted from normalized rates of hits when presented 

reinforcement was “correct” and “incorrect” respectively.  

 

For correlating memory with functional connectivity during learning, we computed an index of valence bias in 

memory, by taking the difference score for each participant between the proportion of remembered images when the 

presented reinforcement outcome was positive vs. negative. Individuals who remembered many more images when 

the reinforcement was “correct” would have a positive difference score reflecting a “positivity bias” in memory, 

whereas those who remembered a similar proportion of images for both positive and negative reinforcements would 

have a value close to zero, reflecting little bias in memory.  

 

Reinforcement Learning Model Analysis  

To explore how reinforcement drives trial-by-trial updating of choices during learning, we fit a standard 

reinforcement learning model with two free parameters to each participant’s observed choices in the learning phase 

(Daw, 2011; Sutton and Barto, 1998). 

 

Limiting the prior probability distribution is appropriate for constraining possible solutions for estimated parameters, 

particularly when comparisons between groups is of interest (Daw, 2011). Additionally, a method for reducing noise 

in fitting parameters from individual participants comes from repeated estimations of LLE fits over many different 

initialization points for the minimization optimizer, and then checking for the smallest LLE and keeping the 

estimated parameters associated with that fit (Daw, 2011). This prevents solutions that fall into local minima. To 

address these pitfalls in reinforcement learning methods, we fit a model with a prior probability distribution limiting 

estimated parameters, α and β. Estimates for each free parameter were constrained with a probability density 
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function [β: Gamma (1.2, 5), α: Beta (1.1, 1.1)] (Daw et al., 2011). Priors were used to penalize the estimates output 

from the minimization optimizer. The minimization optimizer function was initialized at 20 random start points and 

then run 2,000 times, for 40,000 iterations per participant. The best solution, and its associated parameter estimates, 

among the iterations was selected. We also evaluated a model without the constraint of a prior on the free 

parameters (see Supplemental Results).  

 

In Equations 1 and 2, Q is the estimated value, such that Qt is the expected value on trial t and Qt+1 is the updated 

expected value on the trial following trial t. The difference between the expected outcome Q and the reinforcement 

received r on trial t, is the measure of prediction error (δ). 

 
  Qt+1 = Qt + α * δ      Equation 1 
  where δ = (rt - Qt) 
 

One estimated parameter is a learning rate (α), which is a measure of the extent to which reinforcement on each trial 

is used to update choices. Values for α can range from 0 to 1. High learning rates closer to 1 indicate heavily 

weighing recent reinforcement for more rapid updating based on fewer trials; in a context where outcomes are 

probabilistic but probabilities are consistent, this can result in overweighting recent but rare reinforcement, and 

frequently shifting choice behavior (Sutton and Barto, 1998). A learning rate closer to 0 indicates more incremental 

learning in which changes in value accrue over a greater number of trials; this strategy allows for learning over 

several trials, such that surprising but rare reinforcement outcomes will not dramatically shift choice behavior 

(Sutton and Barto, 1998). In a probabilistic task like the one used here, a lower learning rate parameter is generally 

better, as it suggests that learning is guided by accumulating evidence over a greater number of trials rather than 

shifting behavior based on the outcome of any single trial. Another estimated parameter is the inverse temperature 

parameter (β) and follows a softmax distribution. This parameter can be thought of as a link that relates the value of 

an option and the actual choosing of that option (Daw, 2011). It is an index of noise in choice behavior (the extent to 

which a participant exploits the learned value vs. explores other options).  

 

For each participant we also calculated the inverse log likelihood estimate (LLE; Equation 2) to describe how well 

the model fits each participant’s observed choices C, using a minimization optimizer (fmincon in MatLab, 
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http://www.mathworks.com/) to find the global minimum for this test of model fit. The value term here is computed 

trial-by-trial by taking the difference of the expected value on trial t, Qt, and the mean expected value for that 

stimulus from all trials Qm. We used Akaike’s Information Criterion (AIC; Akaike, 1974) to penalize the complexity 

of the model where k is the number of estimated parameters, and computed the chance level pseudo-R for two 

choices over the total number of trials T (Daw, 2011) and subtracted this from the AIC term for each participant.  

 

  LLE = LLE + β * Qt–m(Ct) – log ∑exp(β*Qt–m)        Equation 2 
  where Qt–m = Qt – Qm  
   
  AIC = (-2*(LLE))+(2*k)                        Equation 3 
 
  R = -T*LN(0.5)           Equation 4 
 

Parameters α and β were estimated for each participant as described above, and then respective group parameter 

averages were used for estimating prediction errors for individuals within the groups for behavioral and fMRI 

analyses (Daw, 2011). 

 

Prediction errors were calculated by subtracting the estimated subjective value for a cue on each trial from the 

reinforcement received on that trial (i.e. 1 for “correct” reinforcement and 0 for “incorrect” reinforcement). Thus, if 

actual received outcome is larger than the expected outcome this results in a positive prediction error, and 

conversely received outcomes smaller than the expected outcome result in a negative prediction error. The more 

unexpected the reinforcement, the larger the prediction error estimate in its respective direction. Following previous 

work with a variant of the task (Foerde and Shohamy, 2011) we included both positive and negative prediction 

errors in the same parametric regressor for fMRI analyses. For trial-by-trial regression associating prediction error 

magnitude with later memory accuracy, we fit a mixed effects linear model to each participant’s memory accuracy 

with Prediction error X Group as a fixed effect and Participants modeled as a random effect. 

 

FMRI Data Acquisition and Preprocessing  

Scanning was performed on a 3-Tesla Siemens Trio MRI scanner with a 12-channel head coil at the Ahmanson-

Lovelace Brain Mapping Center at the University of California – Los Angeles. For each functional run during the 

learning phase of the behavioral task, after discarding 4 initial TRs (8 seconds) as the scanner stabilized, 200 
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volumes of T2*-weighted interleaved echo-planar (EPI) images were acquired in the transverse plane (slice 

thickness = 4 mm, 34 slices, voxel size = 3x3x4 mm3, TR = 2000 ms, TE = 30 ms, FA = 90º, matrix = 64 x 64, FOV 

= 192 mm) for a total of 800 volumes. For the test phase all parameters were the same, except 175 volumes were 

collected. A high-resolution, T1-weighted magnetization-prepared rapid-acquisition gradient echo (MPRAGE) 

anatomical scan was acquired in the sagittal plane for each participant at the end of functional scanning (slice 

thickness = 1mm, voxel size = 1x1x1 mm3, 160 slices, TR = 2170 ms, TE = 4.33 ms, FA = 7º, matrix = 256 x 256, 

FOV = 256 mm). Functional images were motion corrected, slice-time corrected using Fourier-space time-series 

phase-shifting, skull stripped using the FMRIB Software Library’s (FSL) Brain Extraction Tool (Smith, 2002), 

spatially smoothed with a 5mm full width at half maximum (FWHM) Gaussian kernel, grand-mean intensity 

normalized, highpass filtered at 0.02 Hz, and registered to standard Montreal Neurological Institute (MNI) template. 

High-resolution MPRAGE images were skull-stripped with BET, segmented into probability maps for gray matter, 

white matter and CSF, and linearly registered to standard Montreal Neurological Institute (MNI) template with 12 

degrees of freedom. All preprocessed images were visually inspected. 

 

Motion  

Functional images were motion corrected using MCFLIRT (Jenkinson et al., 2002) deriving 24 nuisance regressors 

related to motion (6-rigid body transformations – 3-translational, 3-rotational – their derivatives, their squares, and 

the square of the derivatives). One adolescent participant was excluded from all brain analyses for having motion 

greater than 2.5 standard deviations away from the whole sample (adolescents and adults) average motion. After 

removing this participant, the relative motion (t45 = -0.11, p = 0.9) and absolute motion (t45 = 0.29, p = 0.8) did not 

differ between adolescents (n = 25, mean absolute motion 0.25 ± 0.027 SEM, mean relative motion 0.07 ± 0.006 

SEM) and adults (n = 22, mean absolute motion 0.24 ± 0.019 SEM, mean relative motion 0.07 ± 0.004 SEM).  

 

FMRI Statistical Analysis  

Imaging data were processed and analyzed using the FMRI Expert Analysis Tool (FEAT) from FSL v6.00 toolbox 

(www.fmrib.ox.ac.uk/fsl). Subject-level and group-level general linear models were analyzed in FEAT, using a 

general linear model (GLM) in FLAME1. For detecting activations correlated with prediction errors, the model 

included the onset of each reinforcement event weighted by its calculated parametric prediction error value, 
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orthogonalized to the reinforcement event. Onset of the choice for each trial and missed responses were also 

included in the GLM as regressors of non-interest. We used a within participant fixed-effects analysis to average 

regressed activation over the 4 functional runs (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT). Outputs from participant-

level analyses were then analyzed in a group-level general linear model, to observe average activation maps in each 

age group separately, and to compare activation between groups. 

 

Small Volume Correction  

Given our hypotheses, centered on our a priori regions of interest in the striatum and hippocampus, group level 

whole brain results were masked for small volume correction. Correction was carried out in FEAT as part of post-

stats, so that the mask was applied at a threshold of Z > 2.3 (p < 0.01 one-tailed) before cluster extraction for group 

means. The striatum and hippocampus ROIs were anatomically defined using the Harvard-Oxford probability atlas, 

thresholded at 75% probability. The striatum ROI was comprised of bilateral caudate, putamen, and nucleus 

accumbens (Desikan et al., 2006). The hippocampus ROI included the entire head, body, and tail, and visual 

inspection of the hippocampal ROI confirmed that the head was posterior to the amygdala (see Supplemental 

Figure S2a-c). Small volume correction for between-group contrasts was carried out by identifying clusters within 

masked regions using FSLs Cluster tool thresholded at Z > 1.65 (p < 0.05 one-tailed), and cluster extent correction 

thresholds were estimated by AFNIs 3dCulstSim by providing the mask and smoothness as calculated from the 

masked residuals using AFNIs 3dFWHMx (http://afni.nimh.nih.gov/).  

 

Functional Connectivity Analysis  

To examine functional connectivity between the striatum and the hippocampus, the two a priori regions of interests 

where we found prediction error related activation (see Figure 3 and Supplemental Figure S2), we conducted a 

psycho-physiological interaction (PPI) analysis (O’Reilly et al., 2012). For the physiological regressor, we extracted 

timeseries in a region of the anterior hippocampus that consisted of a 3mm sphere drawn around the peak voxel of 

the adolescent group’s mean response to prediction error. To be certain that this seed drawn around the peak voxel 

did not contain activation from regions outside of the hippocampus (e.g. the amygdala), we masked the sphere with 

the same anatomical ROI of hippocampus, described above. For the psychological regressor we used the contrast of 

correct > incorrect presented reinforcement. We included all other trial events in the GLM as regressors of non-



	

	 18 

interest, as well as the physiological and psychological regressors, in addition to the interaction term of interest. The 

resulting map of activation of the interaction between the physiological and psychological regressors was masked 

with the anatomical ROI of the bilateral striatum, described above.  
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